Imaginary Numbers#
Imaginary numbers allow us to find an answer to the question “what is the square root of a negative number?”. We define \(i\) to be the square root of minus one.
\[
i = \sqrt{-1}
\]
We find the other square roots of a negative number, say \(-x\), as follows:
\[
\sqrt{-x} = \sqrt{x \times -1} = \sqrt{x} \times \sqrt{-1} = \sqrt{x} \times i
\]
Example
Find the square root of:
\(\sqrt{-9}\)
\(\sqrt{-13}\)
Solution:
\(\sqrt{-9} = \sqrt{9\times -1} = \sqrt{9}\times\sqrt{-1} = 3i\)
\(\sqrt{-13} = \sqrt{13\times -1} = \sqrt{13}\times\sqrt{-1} = \sqrt{13}i\)
Using NumPy, it is necessary for the input to be a complex number to produce the correct result.
import numpy as np
np.sqrt(-9 + 0j)
3j
np.sqrt(-13 + 0j)
3.605551275463989j
We can check that \(3.6055\ldots\) is equal to \(\sqrt{13}\).
np.sqrt(-13 + 0j) == np.sqrt(13) * 1j
True
If a non-complex input is provided, np.sqrt
will return a nan
.
np.sqrt(-9)
/tmp/ipykernel_2334/2149185541.py:1: RuntimeWarning: invalid value encountered in sqrt
np.sqrt(-9)
nan