Integrating Trigonometric Functions#
We can recall that:
\[
\textrm{If }y=\sin(ax)\textrm{ then }\frac{dy}{dx}=a\cos(ax)
\]
\[
\textrm{If }y=\cos(ax)\textrm{ then }\frac{dy}{dx}=-a\sin(ax)
\]
When integrating, we do the opposite of differentiation, so:
\[
\int\cos(ax)\;dx = \frac{\sin(ax)}{a} + C
\]
\[
\int\sin(ax)\;dx = \frac{-\cos(ax)}{a} + C
\]
Example
Find the following:
\(\int\cos(4x)\;dx\)
\(\int 6\sin(3x)\;dx\)
\(\int\left(5\cos(-x) + \sin(3x)\right)\;dx\)
Solution:
Using the rule \(\int\cos(ax)\;dx = \frac{\sin(ax)}{a} + C\), we can find:
\[ \int\cos(4x)\;dx = \frac{\sin(4x)}{4} + C \]First, we should note \(\int 6\sin(3x)\;dx= 6\int \sin(3x)\;dx\). Now we can apply the rules above to get:
\[ 6\int \sin(3x)\;dx = 6\times \frac{-\cos(3x)}{3} + C = -2\cos(3x) \]Splitting up the integral and extracting constants gives:
\[\begin{split} \begin{aligned} \int \left(5\cos(-x) + \sin(3x)\right)\;dx & = 5\int \cos(-x)\;dx + \int \sin(3x)\;dx \\ & 5\times \frac{\sin(-x)}{-1} + \frac{-\cos(3x)}{3} + C \\ & -5 \sin(-x) - \frac{\cos(3x)}{3} + C \end{aligned} \end{split}\]
As one would, hopefully, expect, `sympy` can handle these operations.
from sympy import symbols, sin, cos, integrate
x = symbols('x')
integrate(cos(4 * x))
\[\displaystyle \frac{\sin{\left(4 x \right)}}{4}\]
integrate(6 * sin(3 * x))
\[\displaystyle - 2 \cos{\left(3 x \right)}\]
integrate(5 * cos(-1 * x) + sin(3 * x))
\[\displaystyle 5 \sin{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3}\]